PATTERNS OF INHERITANCE

Dr Neda M Bogari
PATTERNS OF INHERITANCE

- Definition
- Family Studies
- Pedigree drawing and Terminology
- Mendelian inheritance
- Non-Mendelian inheritance
- Mitochondrial inheritance
PATTERNS OF INHERITANCE:
DEFINITION

• Its the manner in which a particular genetic trait or disorder is passed from one generation to the next.

• Examples:
 • Autosomal dominant,
 • autosomal recessive,
 • X-linked dominant,
 • X-linked recessive,
 • multifactorial, and
 • mitochondrial inheritance.
PATTERNS OF INHERITANCE

- The importance of studying the pattern of inheritance of disorders within families:
 - **Genetic counseling**: Advice to be given to members of a family regarding the susceptibility of their developing the disease OR.
 - Passing it on to their children.
IMPORTANCE

DEFINITION

- A pedigree is a chart of the genetic history of family over several generations.
Standard symbols for pedigrees.

- Male
- Female
- Mating
- Parents and children (1 boy, 1 girl) in order of birth (elder on left)
- Dizygotic twins
- Monozygotic twins
- Sex unspecified
- Number of children of sex indicated
- Affected individuals

- Heterozygotes for autosomal recessive
- Carrier of X-linked recessive
- Death
- Abortion or stillbirth; sex unspecified
- Propositus (-ta)

Method of identifying persons in a pedigree:
- Propositus is child 2 in generation 2

- Consanguineous marriage
- Divorce
- Male
- Female
- Mating
- Mating between relatives
- Offspring listed in birth order. Roman numerals symbolize generations. Arabic numbers symbolize birth order within generation.
- Monozygotic twins
- Dizygotic twins
- Offspring of unknown sex
- Aborted or stillborn offspring
- Deceased offspring
- Affected individual
- Propositus (male) or proposita (female); first case in family that was identified.
- Heterozygous
- X-linked carrier
- Indicates date of death
- Questionable whether individual has trait
IMPORTANCE DEFINITION

• **Locus**: The position of a gene on a chromosome.

• **Allele**: one of several alternative form of a gene at a given gene locus.

• **Genotype**: refers to an individual’s genes.

• **Phenotype**: refers to an individual’s physical appearance.

• **Heterozygous**: having two different alleles at a given gene locus.

• **Homozygous**: having identical alleles at a given gene locus.
Genotype

- the gene types a person inherited

Key:

$E = \text{Unattached earlobes (dominant allele)}$

e = \text{Attached earlobes (recessive allele)}$

1. **Sperm**
 - e
 - E

2. **Egg**
 - e
 - e

3. **Fertilization**
 - EE
 - ee

4. **Zygote**
 - EE
 - ee

5. **Growth and Development**
 - EE
 - ee

6. **Outcome**
 - Unattached earlobe
 - Attached earlobe
 - Unattached earlobe
Phenotype

- the physical (& behavioral) characteristics an individual displays
Alleles

Quiet! I’ll speak for both of us!

I’ll have to be in charge now!

Dominant Allele

Normal Allele

Recessive Allele

Damaged Allele
MENDELIAN DISORDERS

- Austrian botanist Gregor Mendel (1822-84)
- More than 11,000 Mendelian (monogenic) disorders have been revealed
- OMIM (Online Mendelian Inheritance in Man) database
MENDELIAN INHERITANCE

Autosomal inheritance:

• Dominant.
• Recessive.

Sex-linked inheritance:

• Dominant.
• Recessive.
Autosomal Inheritance

Quiet! I’ll speak for both of us!

I’ll have to be in charge now!

Dominant Allele Normal Allele Recessive Damaged Allele
AUTOSOMAL DOMINANT INHERITANCE

• Both male and female are affected
• The disease is observed in multiple generations
• Transmission of the disease can be from both sexes
• Mutation in only one allele is enough to express the disease
• Vertical transmission
• The offspring have 50% chance to have the disease
AUTOSOMAL DOMINANT DISORDER

Affected Father

Normal Mother

Affected Daughter

Normal Son

Affected Son

Normal Daughter
- Punnett's square showing possible gamete combinations for an autosomal dominant allele

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
</tbody>
</table>
AUTOSOMAL DOMINANT DISORDERS

- Huntington disease
- Autosomal dominant
- Gene in chromosome 4p
- Adult onset of the disease
- Choreic movement disorder
- Mood disturbance
- Progressive loss of mental activity
AUTOSOMAL DOMINANT DISORDER

• Marfan Syndrome
• Autosomal dominant
• Gene in chromosome 15q (Fibrillin)
• Connective tissue disorder with characteristic skeletal, dermatological, cardiac, aortic, ocular and dural malformations.
Achondroplasia is autosomal dominant genetic disorder that is a common cause of dwarfism.
Most Cancer Susceptibility Genes Are Dominant With Incomplete Penetrance

- Penetrance is often incomplete
- May appear to “skip” generations
- Individuals inherit altered cancer susceptibility gene, not cancer
Factors Affecting Penetrance

Not everyone with an altered gene develops cancer.
AUTOSOMAL DOMINANT DISORDERS

• Variable expressivity: some individuals show more aggressive form of the disease while other showed a milder form of the disease.

• Reduced penetrance: is term used to indicate that the disease some time to presenting no abnormal clinical feature

• New mutation

• Codominance: the presence of two alleles in heterozygous state (e.g. AB blood group)
AUTOSOMAL RECESSIVE INHERITANCE

• Both male and female are affected
• The disease is observe in only single generation
• Both gene alleles (Heterozygous) need to be affected in order to express the disease
Autosomal Recessive Inheritance

Carrier Father
Carrier Mother

Normal Son 25% normal
Carrier Daughter 50% chance carrier
Carrier Son
Affected Daughter 25% affected
- Punnett's square showing possible gamete combinations for an autosomal recessive allele

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Aa</td>
<td>AA</td>
</tr>
<tr>
<td>a</td>
<td>aa</td>
<td>aA</td>
</tr>
</tbody>
</table>
Autosomal recessive inheritance involves:

- Two germline mutations (one from each parent) to develop disease.
- Equally transmitted by men and women.

Noncarrier individual
Non-affected carrier
Affected individual
Families with individuals expressing autosomal recessive phenotypes.
AUTOSOMAL RECESSIVE INHERITANCE

• Consanguinity

• **Pseudodominance** is an autosomal recessive condition appears in subsequent generations and so therefore appears to follow an autosomal dominant pattern.

• **Locus heterogeneity**: A single disorder, trait, or pattern of traits caused by mutations in genes at different chromosomal loci.
Genetic Heterogeneity

Mutations in different genes can cause the same disease.

Chr 17

Chr 13

Hereditary breast and ovarian cancer
Different mutations in the same gene can produce a wide range of effects. In cystic fibrosis, for instance, the gene that controls mucus production can have more than 300 different mutations; some cause severe symptoms; some, mild symptoms; and some, no symptoms at all.
Autosomal Recessive disorder

- **Galactosemia**
- An infant is unable to metabolize galactose
- Damage of the liver, central nervous system and various other body systems
- An infant may develop jaundice, vomiting, lethargy, irritability and convulsions
Autosomal Recessive disorder

- Cystic fibrosis (CF)
- Gene localized at chromosome 7q
- Affected children have chronic respiratory infection, and malabsorption
SEX-LINKED INHERITANCE

- X-linked dominant
- X-linked recessive
- Y-linked
X-LINKED DOMINANT INHERITANCE

- Mutations only in X chromosome
- Both males and females are affected
- Affected males transmit the disease to their daughters (male to female only)
- Affected females transmit the disease to daughters and sons
X-LINKED DOMINANT INHERITANCE

X-linked dominant, affected father

X-linked dominant, affected mother
X-LINKED DOMINANT INHERITANCE

- More females than males
- All daughters of affected males are affected, but no sons
- A child of an affected female has 50% risk of disease
X-LINKED RECESSIVE INHERITANCE

• Mutations only in X chromosome
• Only males are affected
• Transmission through unaffected females to male
• No male to male transmission
X-LINKED RECESSIVE INHERITANCE
- Affects almost exclusively men
- Affected men born from carrier mother, with 50% risk of disease
- No male to male transmission
X-LINKED RECESSIVE DISORDER

• Duchenne muscular dystrophy (DMD)

• Affected gene on chromosome Xp21

• Progressive weakness and muscle wasting
Y-LINKED INHERITANCE

- Only males are affected
- Male infertility
Y-LINKED INHERITANCE (Y)

- Affects only males
- Affected males always have affected fathers
- All sons of an affected male are affected
Y-linked gene (feature)

Only males are affected

Hairy ears
MITOCHONDRIAL INHERITANCE

All mitochondrial DNA is maternally inherited.

Mitochondrial diseases are myopathies, neurological syndrome, cardiomyopathies.